Novel Tetraphosphabarrelene and -semibullvalene Derivatives by Reactions of 2,4,6-Tri-*tert*-butyl-1,3,5-triphosphabenzene with Phosphaalkynes^{**}

Paul Binger*a[+], Stefanie Stutzmanna, Joachim Bruckmanna, Carl Krügera, Joseph Grobe*b, Duc Le Vanb, and Torsten Pohlmeyerb

Max-Planck-Institut für Kohlenforschung^a, Kaiser-Wilhelm-Platz 1, D-45470 Mühlheim a. d. Ruhr, Germany

Anorganisch-Chemisches Institut der Universität Münster^b, Wilhelm-Klemm-Straße 8, D-48149 Münster, Germany Fax: (internat.) + 49(0)251/83-36098

Received July 30, 1998

Keywords: Phosphorus heterocycles / Phosphaalkynes / Triphosphabenzene / Tetraphosphabarrelenes / Tetraphosphasemibullvalene

2,4,6-Tri-*tert*-butyl-1,3,5-triphosphabenzene **4** reacts with phosphaalkynes $P \equiv C - R$ [R = tBu (**5a**), tPen (**5b**)] at room temperature in a formal [4 + 2] cycloaddition to yield the corresponding 1,3,5,7-tetraphosphabarrelene derivatives **8a** and **8b**, respectively. The analogous reaction of **4** with the aminophosphaethyne $P \equiv C - N(iPr)_2$ (**9**) unexpectedly leads

to the 1,3,4,7-tetraphosphasemibullvalene derivative **10** as the only product. The single-crystal X-ray analysis of **10** exhibits a diphosphirane unit with a very long PP distance of 2.274(1) Å together with a large extension of the PCP angle in the three-membered ring to $75.3(1)^{\circ}$.

Whereas the λ^3 -phosphinine (phosphabenzene) $\mathbf{1}^{[1]}$ as well as a great number of its functional derivatives $^{[2]}$ have been thoroughly investigated, only little information is published on "all- λ^3 " di- or triphosphinines. So far the 1,4-diphosphabenzene derivative $\mathbf{2}$ was only detected in solution, but its NMR data are not complete. $^{[3]}$ As first representatives of the $1\lambda^3, 3\lambda^3$ -diphosphinines $^{[4]}$ and $1\lambda^3, 3\lambda^3, 5\lambda^3$ -triphosphinines $^{[5]}$ compounds $\mathbf{3}$ and $\mathbf{4}$, respectively, have been isolated in pure form by using transition metal complex templates for the cyclotrimerization of *tert*-butylphosphaethyne $\mathbf{5a}$, followed by oxidative replacement, and characterized.

The preparation of **4** was accomplished by oxidative cleavage of the hafnium complex [(COT)Hf(tBuCP)₃] **(6)** with the useful reagent hexachloroethane. Template **6** was also used for the preparation of the η^4 -1,3,5,7-tetraphosphabarrelene complex **7** by reaction with tBuC \equiv P **(5a)** (Scheme 1). Cleavage of **7** with C₂Cl₆ yields the 1,3,5,7-tetraphosphabarrelene derivative **8a**, which had been isolated before from the reaction of bis(cyclooctatetraene)zirconium with **5a**. [6] It is of particular interest that the valence

isomers of **4**, 1,3,5- and 1,2,4-triphospha-Dewar-benzene^{[5][7]} can be prepared selectively by the same synthetic procedure on use of modified cyclooctatetraene ligands for production of precursor analogues of **6**, and by variation of the reaction temperatures. In addition, Binger et al. ^[8] reported recently on homo-Diels—Alder reactions of 2,4,6-tri-*tert*-butyl-1,3,5-triphospha-Dewar-benzene.

Scheme 1

$$P = C - tBu \quad (5a)$$

$$P = C - tBu \quad (5a)$$

$$C_{2}Cl_{6} \quad C_{2}Cl_{4} \quad C_{2}Cl_{4} \quad cot Hf Cl_{2}$$

$$P = C - tBu \quad (5a)$$

$$P = C - tBu$$

In 1998 Regitz et al. [9] presented a new effective method for the synthesis of **4** and other alkyl-substituted analogues, based on the use of the strong Lewis acid $tBuN=VCl_3$ as

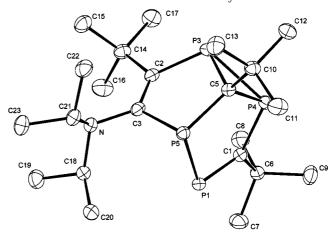
2071

^[+] Present address: Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany; Fax: (internat.) +49 (0)631/205-3921.

FULL PAPER ______P. Binger, J. Grobe et al.

cyclotrimerization agent. The availability of $\bf 4$ by the procedures mentioned above allowed reactivity studies of the 6π -heteroarene, in particular with respect to cycloaddition reactions.

For instance, the tetraphosphabarrelenes 8a or 8b (Scheme 2) are formed nearly quantitatively within 12 h by treating a pentane solution of 4 with the phosphaethynes 5a and 5b, respectively. This result demonstrates that the addition of a further phosphaalkyne molecule is possible even without coordination of a cyclotrimer of 5 to a complex fragment. Of particular interest is the possibility to prepare unsymmetrically substituted tetraphosphabarrelenes like 8b. The reactions proceed under mild conditions indicating an astonishing reactivity of 4 against dienophiles. So far, similar reactions of phosphinines or their P-coordinated tungsten complexes with $tBuC \equiv P$ (5a) have not been observed. [10] However, phosphinines undergo [4 + 2] cycloadditions with electron-deficient olefins under forced conditions. These reactions can be enhanced by σ -complex formation with [(CO)₅W(THF)]. [2b] The reactivity of phosphaarenes is also considerably increased if they contain an additional N or P atom in the 6π -system as in case of the 1,3-azaphosphinines published by Märkl et al.[11][12] or of the 1,4-diphosphinine 2^[3b], though fairly extreme conditions (100-120°C, high pressure vessel) are necessary for reactions with alkynes [3b][12] or 5a. [11]


Scheme 2

$$tBu \xrightarrow{P} tBu$$

The analogous reaction of 4 with di(isopropylamino)phosphaethyne 9 leads to a really unexpected result: According to a 31P-NMR control experiment the starting compounds already react at -20°C quantitatively within a few minutes to give the tetraphosphasemibullvalene derivative **10**. The unsymmetrical molecular structure of **10** is proven by three different ¹H-NMR signals for the *t*Bu groups as well as by four separate ³¹P resonances of equal intensities. Only one of them is found at chemical shifts typical for phosphaalkene fragments ($\delta_P = 347.5$). Chemical shifts and coupling constants of all ³¹P signals are in good accordance with those of the tetra-tert-butyltetraphosphasemibullvalene reported by Regitz et al. [13]. The same is true for the ¹³C-NMR data of both compounds. Fluxional behaviour as observed for the corresponding hydrocarbon derivatives (Cope rearrangement) was not detected for 10 at room temperature. Measurements at higher temperatures failed because **10** already decomposes at 20 °C even in inert solvents.

The molecular structure of 10 was deduced from a single-crystal X-ray analysis and supports the conclusions drawn from the NMR spectroscopic investigations. Figure 1 shows one of the enantiomers observed in the crystal lattice.

Figure 1. Molecular structure of ${\bf 10}$ in the crystal; the hydrogen atoms are omitted for clarity^[a]

 $^{[a]}$ Selected bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$: P1-P5 2.207(1), P3-P4 2.274(1), P3-C5 1.858(2), P4-C5 1.865(2), P5-C5 1.856(2), P1-C1 1.693(2), P3-C2 1.809(2), P4-C1 1.796(2), P5-C3 1.874(2), C2-C3 1.366(2), N-C3 1.450(2), N-C18 1.506(2), N-C21 1.494(2); C1-P1-C5 100.4(1), C5-P3-P4 52.5(1), C2-P3-P4 111.8(1), C5-P3-C2 99.4(1), C5-P4-C1 101.5(1), C1-P4-P3 107.1(1), C5-P4-P3 52.2(1), C5-P5-P1 99.7(1), C5-P5-C3 97.3(1), C3-P5-P1 87.7(1), C3-C2-P3 116.6(1), C2-C3-P5 116.2(1), P4-C5-P3 75.3(1), P5-C5-P4 109.2(1), P5-C5-P4 115.1(1).

As to be expected, the $P-(sp^2)C$ single bonds in the tricyclic phosphorus/carbon skeleton of **10** are significantly shorter (P3–C2: 1.809, P4–C1: 1.796 Å) than $P-(sp^3)C$ distances (1.856 to 1.874 Å). The P1–C1 bond length of 1.693 Å is very close to the average value (1.67 Å) of localized P=C double bonds. The distance P3–P4 amounts to 2.274 Å and, so far, represents the longest PP bond in diphosphirane derivatives. [9][13][15][16] Consequently the angle P3–C5–P4 within the three-membered ring is opened to 75.3°.

The formation of **10** from **4** and **9** is not directly evident, although **9**, due to its electronic structure [17], often shows a different behaviour to alkyl-substituted phosphaalkynes, especially in cycloaddition reactions. [18] Assuming that the π -donor interaction of the R₂N substituent enhances the nucleophilicity of the *P*-atom, an attack of **9** at one of the ring carbon atoms seems reasonable as the first reaction step followed by a ring closure to the tricyclic intermediate **12**. The stable end product is reached by a further nucleophilic attack of the aminophosphaalkene *P*-atom and by valence isomerization. The competitive intramolecular [2 + 2] cycloaddition with formation of the pentacyclic compound **13** is less probable for two reasons:

(i) Aminophosphaalkenes are not suited for cycloaddition reactions due to the loss of olefinic character, (ii) high-level ab initio calculations $^{[19]}$ on different $(HCP)_4$ isomers favour the semibullvalene system over the cuneane structure.

In conclusion, the work presented in this paper has led to a selective synthesis of the tetraphosphabarrelene derivatives **8a** and **8b** from the 1,3,5-triphosphabenzene **4** and to a surprising reaction of **4** with **9** affording the novel tetraphosphasemibullvalene derivative **10**, thus enlarging our knowledge about cyclotetramers of phosphaalkynes [20] and clearly demonstrating the important influence of C-amino groups on the reactivity of P = C systems.

This work was supported by the *Deutsche Forschungsgemeinschaft* (Graduiertenkolleg "Phosphor als Bindeglied verschiedener chemischer Disziplinen", Universität Kaiserslautern; and Graduiertenkolleg "Hochreaktive Mehrfachbindungssysteme", Universität Münster) and by the *Fonds der Chemischen Industrie*.

Experimental Section

All experiments were carried out under argon (or by using a standard vacuum line) in anhydrous solvents. Reaction vessels were either Schlenk flasks or ampoules with several break seals and an NMR tube. $-^{1}$ H and 13 C NMR: Bruker AC 200, AC 300, and AMX 400; chemical shifts relative to the solvent signals, calibrated to TMS. $-^{31}$ P NMR: Bruker AC 200, AC 300, external standard H_{3} PO₄. 2,4,6-Tri-*tert*-butyl-1,3,5-triphosphabenzene $\mathbf{4}^{[5][9]}$ and the Phosphaalkynes tBuC \equiv P ($\mathbf{5a}$) $^{[21a]}$, tPenC \equiv P ($\mathbf{5b}$) $^{[21b]}$, (tPr) $_{2}$ NC \equiv P ($\mathbf{9}$) $^{[22]}$ were prepared according to the literature.

Standard Procedure for the Preparation of the Tetraphosphabar-relenes 8a, 8b: A pentane solution (2 ml) of the phosphaalkyne 5a (80 mg, 0.8 mmol) or 5b (100 mg, 0.9 mmol) was added at room temperature to a pentane solution (3 ml) of the triphosphabenzene derivative 4 (200 mg, 0.67 mmol). The mixture was stirred for 12 h, and volatile components were removed in vacuo. The residue was taken up in pentane and filtered through a layer of silica gel. After evaporation of the solvent in vacuo the tetraphosphabarrelene 8a and 8b, respectively, was obtained as a yellow powder (8a: 260 mg, 0.65 mmol, 98% yield; 8b: 265 mg, 0.64 mmol, 96% yield).

2,4,6,7-Tetra-tert-butyl-1,3,5,8-tetraphosphabicyclo[2.2.2]octa-2,5,7-triene (**8a**) was characterized by comparison of the NMR data with those of an authentic sample. ^[6]

[4,6,7-Tri-tert-butyl-2-tert-pentyl]-1,3,5,8-tetraphosphabicyclo-[2.2.2] octa-2,5,7-triene (**8b**): - ¹H NMR (C₆D₆, 200.1 MHz, 25°C): $\delta = 0.70$ (q, J = 7.4 Hz, 2 H, CH_2CH_3), 1.39 (3 H, CH_2CH_3), 1.43 [s, br., 15 H, $C(CH_3)_3$ and $C(CH_3)_2CH_2$], 1.77 [s, br., 18 H, $C(CH_3)_3$]. - ¹³C {¹H} NMR (C_6D_6 , 50.3 MHz, 25°C): $\delta = 28.3 \text{ [m, } CH_3CH_2 \text{ and } (CH_3)_2C], 30.5 \text{ [m, } (CH_3)_3C], 30.7 \text{ [m, }$ ${}^{3}J(P,C) = 0.3$ and 14.9 Hz, $(CH_{3})_{3}C$, 33.4 [t, ${}^{3}J(P,C) = 9.5$ Hz, CH_3CH_2], 35.8 [q, ${}^2J(P,C) = 16.1 \text{ Hz}$, $C(CH_3)_3$], 41.6 [m, $C(CH_3)_3$], 44.8 [dd, ${}^{2}J(P,C) = 19.1$ and 25.4 Hz, $C-CH_{2}CH_{3}$], 101.1 [m, C-4], 225.4 [m, C-2], 227.3 [m, C-6, C-7]. - $^{31}P\{^{1}H\}$ NMR ($C_{6}D_{6}$, 81.0. MHz, 25 °C): $\delta = -92.0$ [q, ${}^{2}J(P,P) = 12.6$ Hz, P-C=P], 320.7 $[t, {}^{2}J(P,P) = 12.6 \text{ Hz}, P = C - C(CH_{3})_{3}], 324.8 [q, {}^{2}J(P,P) = 12.6 \text{ Hz},$ $P=C-C(CH_3)_2C_2H_5$]. -MS (EI, 70 eV); m/z (%): 414 (68) [M⁺], $314 \ (9) \ [M^{+} - PC_{5}H_{9}], \ 300 \ (3) \ [M^{+} - PC_{6}H_{11}], \ 276 \ (74) \ [M^{+} - PC_{1}H_{11}], \ 276 \ (74) \ [M^{+}$ $2\;C_5H_9],\;262\;(100)\;[M^+\,-\,C_5H_9\,-\,C_6H_{11}],\;200\;(22)\;[M^+\,-\,PC_5H_9]$ $- PC_6H_{11}$].

2,6,8-Tri-tert-butyl-5-diisopropylamino-1,3,4,7-tetraphosphatricyclo [5.1.0.0 4.8] octa-2,5-diene (10): 80 mg (0.27 mmol) of the triphosphabenzene derivative 4 were placed in an ampoule with break seals and an NMR tube together with 0.5 ml [D₈]toluene. 45 mg (0.31 mmol) of di(isopropyl)aminophosphaethyne 9 were then introduced by vacuum condensation at -196 °C. During warm-up to -20°C the mixture was continuously stirred and afterwards tranfused in the NMR tube. Measurements at −30°C indicated a complete reaction of the triphosphabenzene 4 and the quantitative formation of the tetraphosphasemibullvalene derivative 10. Orange crystals of 10 were obtained on cooling the [D₈]toluene solution at -78°C. Their quality was sufficient for a single-crystal X-ray structure analysis. $-{}^{1}H$ NMR (C₇D₈, 400.1 MHz, $-30{}^{\circ}C$): $\delta = 0.90$ [s, 9 H, $C(CH_3)_3$], 1.21 [d, J = 6.5 Hz, 6 H, $CH(CH_3)_2$], 1.28 [d, $J = 6.5 \text{ Hz}, 6 \text{ H}, \text{ CH}(\text{C}H_3)_2], 1.38 \text{ [s, 9 H, C}(\text{C}H_3)_3], 1.48 \text{ [s, 9 H,}$ $C(CH_3)_3$], 3.38 [sept, J = 6.5 Hz, 2 H, $CH(CH_3)_2$]. $- {}^{13}C$ { ^{1}H } NMR (C_7D_8 , 75.5 MHz, $-35^{\circ}C$): $\delta = 24.8$ [s, $CH(CH_3)_2$], 29.6 [s, br., $C(CH_3)_3$ at C-8], 32.3 [d, ${}^3J(P-6,C) = 11.3$ Hz, $C(CH_3)_3$ at C-6], 34.3 [dd, ${}^{3}J(P-3,C) = {}^{3}J(P-1,C) = 7.6$ Hz, $C(CH_3)_3$ at C-2], 34.9 $[q, {}^{2}J(P-1,C) = {}^{2}J(P-4,C) = {}^{2}J(P-7,C) = 11.7 \text{ Hz}, C(CH_3)_3 \text{ at } C$ 8], 37.3 [d, ${}^{2}J(P-7,C) = 25.2$ Hz, $C(CH_{3})_{3}$ at C-6], 42.2 [dd, ${}^{2}J(P-7,C)$ 3,C) = 22.6, ${}^{2}J(P-1,C) = 13.6$ Hz, $C(CH_3)_3$ at C-2], 55.6 [s, br., $CH(CH_3)_2$, 63.0 (m, C-8), 156.1 [dm, ${}^{1}J(P-7,C) = 65.5$ Hz, C-6], 177.7 [d, ${}^{1}J(P-4,C) = 39.9$ Hz, C-5], 211.8 [t, ${}^{1}J(P-3,C) = {}^{1}J(P-3,C)$ 1,C) = 83.0 Hz, C-2] (for numbering see Scheme 3). - $^{31}P\{^{1}H\}$ NMR (C_7D_8 , 121.5. MHz, $-35^{\circ}C$): $\delta = -92.1$ [dd, ${}^1J(P-1,P-7) =$ 174.6, ${}^{2}J(P-4,P-7) = 16.4$ Hz, P-7], -19.6 [ddd, ${}^{1}J(P-1,P-7) =$ $174.6, {}^{2}J(P-1,P-3) = {}^{3}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{ Hz}, P-1], 88.7 \text{ [ddd, } {}^{1}J(P-1,P-4) = 23.5 \text{[ddd, } {}^{1}J(P-1,P-4) = 23$ 3,P-4) = 270.0, ${}^{2}J(P-1,P-4)$ = 23.5, ${}^{2}J(P-4,P-7)$ = 16.4 Hz, P-4], $347.5 \text{ [dd, } ^{1}J(P-3,P-4) = 270.0, ^{2}J(P-1,P-3) = 23.5 \text{ Hz, P-3] (for }$ numbering see Scheme 3).

Crystal Structure Analysis of $10^{[23]}$: Enraf-Nonius-CAD4 Diffractometer (Mo- K_{α} radiation), T=100 K; structure solution by heavy-atom method (SHELXS-86^[24]) and structure refinement by SHELXL-93^[25]; monoclinic, space group $P2_1/c$; lattice constants $a=10.0494(10),\ b=20.4954(10),\ c=12.3895(10)$ Å, $\beta=99.983(10)^\circ;\ V=2513.2(3)$ ų; Z=4; $\mu(\text{Mo-}K_{\alpha})=0.308$ mm $^{-1}$, crystal size $0.42\times0.39\times0.35$ mm; 9113 independent reflections ($R_{\text{int}}=0.0648$) 28745 measured of which 6630 were considered observed with $I>2\sigma(I)$; residual electronic density 0.481 and -0.357 e/ų. 408 parameters (C, N, and P anisotropic, the positions of the H-Atoms were found and refined isotropically); $R_1=0.0441$; $wR^2=0.1180$.

FULL PAPER P. Binger, J. Grobe et al.

- * Dedicated to Professor Bernt Krebs on the occasion of his 60th birthday.
- A. J. Ashe III, J. Am. Chem. Soc. 1971, 93, 3293-3295.
- [2] [2a] G. Märkl in Multiple Bonds and Low Coordination in Phosphorus Chemistry (Eds.: M. Regitz, O. J. Scherer), Thieme Verlag, **1990**, p. 220–257. – [2b] H. Trauner, P. Le Floch, J.-M. Lefour, L. Ricard, F. Mathey, *Synthesis*, **1995**, 717–726. [3] [3a] Y. Kobayashi, J. Kumadaki, A. Ohsawa, H. Hamada, *Tetra-baday Lett.* **1077**, 2716, 2716, 2716, 174 ph. Hamada, 1077
- hedron Lett. 1976, 3715–3716; Tetrahedron Lett. 1977, 867–868. $^{[3b]}$ Y. Kobayashi, H. Hamada, S. Fujino, A. Ohs-
- awa, J. Kumadaki, *J. Am. Chem. Soc.* **1980**, *102*, 252–255. D. Böhm, F. Knoch, S. Kummer, U. Schmidt, U. Zenneck, *Angew. Chem.* **1995**, *107*, 251–254; *Angew. Chem. Int. Ed. Engl.* **1005**, *24*, 109, 201 **1995**, *34*, 198–201.
- P. Binger, S. Leininger, J. Stannek, B. Gabor, R. Mynott, J. Bruckmann, C. Krüger, *Angew. Chem.* **1995**, *107*, 2411–2414; *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 2227–2230.
- P. Binger, G. Glaser, B. Gabor, R. Mynott, Angew. Chem. 1995, 107, 114-116; Angew. Chem. Int. Ed. Engl. 1995, 34, 81-83.
- P. Binger, S. Leininger, K. Günther, U. Bergsträßer, *Chem. Ber./Recueil* **1997**, *130*, 1491–1494.
- P. Binger, S. Leininger, M. Regitz, U. Bergsträßer, J. Bruckmann, C. Krüger, J. Organomet. Chem. 1997, 529, 215–221. F. Tabellion, A. Nachbauer, S. Leininger, C. Peters, M. Regitz, F. Preuss, Angew. Chem. 1998, 110, 1318–1321; Angew. Chem. Int. Ed. Engl. 1998, 37, 1233–1235.
- [10] E. Wellner, Diplomarbeit, Universität Kaiserslautern 1996.
 [11] G. Märkl, S. Dietl, M. L. Ziegler, B. Nuber, Angew. Chem. 1988, 100, 426-428; Angew. Chem. Int. Ed. Engl. 1988, 27, 389-390.
- 100, 420–426, Angew. Chem. Int. Ed. Engl. 1966, 27, 363–396. [12] [12a] G. Märkl, G. Dorfmeister, Tetrahedron Lett. 1987, 28, 1093–1096. [12b] For the [4 + 2] cycloaddition reactions of 2,6-diaza-1-phosphinines and 1,2-azaphosphinines with alkynes, see: N. Avarvari, P. Le Floch, F. Mathey, J. Am. Chem. Soc. 1996, 108, 11978–11979.
- A. Mack, B. Breit, T. Wettling, U. Bergsträßer, S. Leininger, M. Regitz; Angew. Chem. **1997**, 109, 1396–1398; Angew. Chem. Int. Ed. Engl. **1997**, 36, 1337–1340.
- [14] R. Appel in Multiple Bonds and Low Coordination in Phos-phorus Chemistry (Eds.: M. Regitz, O. J. Scherer), Thieme Verlag, 1990, p. 157–214.
 [15] [15a] F. Mathey, Chem. Rev. 1990, 90, 997-1025. — [15b] B. Breit,

- U. Bergsträßer, G. Maas, M. Regitz, Angew. Chem. 1992, 104, U. Bergstrabet, G. Maas, M. Regitz, Aligew. Chem. 1992, 104, 1043–1046; Angew. Chem. Int. Ed. Engl. 1992, 31, 1055–1058.

 1^{15c} M. Julino, M. Slany, U. Bergsträßer, F. Mercier, F. Mathey, M. Regitz, Chem. Ber. 1995, 128, 991–997.

 J. Grobe, D. Le Van, F. Immel, B. Krebs, M. Läge; Chem. Ber. 1996, 129, 1271–1274.
 [17] I. G. Becker, M. Böhringer, R. Gleiter, H.-H. Pfeifer, J. Grobe, 1997,
- D. Le Van, M. Hegemann, *Chem. Ber.* **1994**, 127, 1041–1045.

 [17b] J. Grobe, D. Le Van, M. Hegemann, B. Krebs, M. Läge,
- Heteroat. Chem. **1994**, *5*, 337–341.

 [18] [18a] J. Grobe, D. Le Van, B. Broschk, L. S. Kobrina, *Tetrahedron Lett.* **1993**, *34*, 4619–4622. [18b] H. Pucknat, J. Grobe, D. Le Van, B. Broschk, M. Hegemann, B. Krebs, M. Läge, *Chem. Eur. J.* **1996**, *2*, 208–213. – [18c] J. Grobe, D. Le Van, B. Broschk, M. Hegemann, B. Lüth, G. Becker, M. Böhringer, E.-U. Würthwein, *J. Organomet. Chem.* **1997**, *529*, 177–187.
- Würtinwein, J. Organomet. Chem. 1997, 329, 177–167.

 [19] [19a] B. Geißler, S. Barth, U. Bergsträßer, M. Slany, J. Durkin, P. B. Hitchcock, M. Hofmann, P. Binger, J. F. Nixon, P. von Ragué Schleyer, M. Regitz, Angew. Chem. 1995, 107, 485–488; Angew. Chem. Int. Ed. Engl. 1995, 34, 484–487. [19b] M. Hoffmann, Dr. von Det. Their L. Universität Falengen Nürmhorg. mann, Dr. rer. nat. Thesis, Universität Erlangen-Nürnberg,
- 1996.

 [20] [20a] A. Mack, M. Regitz, Chem. Ber./Recueil 1997, 130, 823-834. [20b] R. Streubel, Angew. Chem. 1995, 107, 478-480; Angew. Chem. Int. Ed. Engl. 1995, 34, 436-438.

 [21] [21a] G. Becker, G. Gresser, W. Uhl, Z. Naturforsch., Teil B, 1981, 36, 16-19. [21b] T. Allspach, M. Regitz, G. Becker, W. Becker, Combacil 1998, 31-36 Synthesis **1986**, 31–36.
- J. Grobe, D. Le Van, B. Lüth, M. Hegemann, Chem. Ber. 1990, 123, 2317-2320.
- [23] Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-102329. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax: int. code + 44-1223/336-033, E-mail: deposit@chemcrys.cam.ac.uk].
- [24] G. M. Sheldrick, SHELXS-86. Program for Crystal Structure
- Solution, Universität Göttingen, 1986.
 G. M. Sheldrick, SHELXI-93. Program for Crystal Structure Refinement, Universität Göttingen, 1993.

[I98252]